The Technology of Lexical Navigation

James W. Cooper
IBM Thomas J Watson Research Center
PO Box 704
Yorktown Heights, NY 10598
914-784-7285
jwenmr@watson.ibm.com

ABSTRACT

Lexical Navigation provides users a mnvenient technique for
moving between related documents and terms within a
collection without ever having to formulate an exact query to
retrieve these related entities. It consists of a visual interface
client, a server and a back end index and database. We discuss
how these components are constructed and utilized to provide
useful feedback to the user on additional related information that
may be helpful in hisinformation retrieval.

Categories and Subject Descriptors

H5.2 [Information Interfaces and Presentation] User
Interfaces — Graphical User Interfaces, Natural language,
Theory and methods, Windowing systems.

General Terms
Algorithms, Management,
Experimentation, Human Factors.

Measurement, Design,

Keywords

Text mining, Search, Document display, Daabases, Lexica
navigation, Client-Server, SOAP, XML, Java, JavaScript,
JavaServer Pages.

1. INTRODUCTION

We have previously described the concept of Lexical Navigation
[1] and the layout algorithms for the representation of alexical
network [2]. In this pger, we discuss the browsing interface and
the technical underpinnings that make a responsive navigation
system that can approach the ideal of query-free document
retrieval.

Our system is constructed using the Textract text mining system
that recognizes names [3] and multiword technical terms[4] and
relations between them [5], a search engine and a relationa
database.

In this discussion, we will describe how we constructed a lexical
navigation system for 824 documents describing the 200 most
prescribed dugs, as obtained from rxlist.com. There are five
documents for each drug, but there are fewer than 1000
documents because some drugs appear under more than one
name. The system isin no way limited to such small collections,
but this collection merely provides a convenient and interesting
set of publicly available example documents.

We start with this collection of drug documents and run the
Textract processor on this collection. This gives us

A file of the terms in the entire collection, reduced to
their canonical forms.

A file of the termsin each document.

Files containing the named and unnamed relations [5]
discovered in the collection

A pair of files representing a concordance of all the
sentences containing salient terms in the entire
collection.

We construct a DB2 database consisting of the following tables:

Documents

Terms

TermDocs (Terms per document)

. Relations

We load the Documents table with a series of document key
numbers, along with the title and URL of each document. We
load the Terms table from the collection-wide aggregation of
terms in canonical form along with their frequencies and 1Qs,
where IQ is a measure of term selectivity. Terms having a high
1Q appear only in afew documents.

We also load the TermDocs table with the terms in each
document, where each document is referenced using the integer
document key from the Documents table. By putting these data
into a database where we can fetch them rapidly, we can look up
the principal multi-word terms in a document or the documents
which contain any specified term.

The Relations table contains both named and unnamed relations
discovered by Textract, aswell as the computed strengths of the
unnamed relations. The unnamed relations are computed using a
mutual information calculation and the named relations
discovered pattern recognition on each document, looking for

common patterns such as appositives and parentheticals. The

named rel ations detection algorithm finds common relations like
“CEO of,” “islocated in”, “makes,” and “similar-to.” These sort
of relations are more likely to be detected in news story writing

than in technical writing, and so the unnamed relations become
considerable more important in technical documents.

We construct the Relations database table to contain both of the
related terms, the strength of the relation and the relation name
or “none” for unnamed relations. Named relations are assigned a
strength of “100” automatically. The weight of the unnamed

relations comes from the mutual information computation.

Textract aso produces a concordance of all the sentences
containing salient terms in the entire collection. From this
concordance, we build a special search index called the context
thesaurus that alows us to provide a list of terms in the
collection that occur near the query phrase. Thisindex is similar

to and inspired by the Phrase Finder of Xu and Croft [7]. We
construct the context thesaurus by constructing a pseudo-
document of the sentences surrounding each term anywhere in
the collection and index that document, giving the document that
term as the title. We discard each pseudo-document after
indexing it.

In addition to the database of terms discovered by Textract, we
also index all of the documents using a standard search engine.
Currently are using IBM’s GTR search engine for this purpose.
This same engine is used to index the pseudo-documents for the
context thesaurus described above.

2. THE SERVER STRUCTURE

The data management system is constructed using our Java class
library called KSS (for Knowledge System Server), which is
effectively a Facade design pattern wrapping access to the
underlying DB2 database and the GTR search engine. Then a
non-visua server-side bean is used to make calls to the KSS
library.

Database
KSS class l&—> Server bean

@___' library
3
Search index
JavaServer
Pages

Client browser

ocument
Collection

Figurel-Thelogical entitiesused in Lexical
Navigation

The methods of this server-side bean are accessed by
JavaServer Pages, which generate the HTML pages as shown in
Figure 1.

3. THE LEXICAL NAVIGATION
SCENARIO

A typical use startswith asimple, short query (Figure 2)

Search Top 200 Drugs

migraine

r'u' it mkip IM E

Figure2 —-Theinitial query screen

The initial query page is a simple JavaScript form with a single
field named “query.” When the form is sent the web server, the
servliet engine loads the JavaBean and executes the bean's
setQuery method. This causes Java code to be executed that

makes two calls to the search engine, one against the document
index and one against the context thesaurus index. Then, for
each document, the bean looks up the most salient termsin each
document and caches them for output.

The returned JSP presents both a list of documents and a list of
context thesaurus terms that occur near that query in the
collection. You can then narrow or focus the query using some
of these suggested terms. These terms provide an entry to the
actual terms we have recognized in the collection rather than
terms we might hope to find in the collection and thus provide a
much more accurate way of refining a query.

In addition, you can click on each of the document titles and see
the highest-ranking terms that appear in them. This is a sort of
simplistic document summary, but it has the additional
advantage that it can be produced even from documents where
traditional summarization techniques fail, since it is not
dependent on paragraph structure. You can also add these terms
to the query to find “more documents like this.” We show a
typical result in Figure 3.

=] [mntes e dcre

Show Doz amen | Apd nmun

Foisian |

Figure 3 —The result of the query “migraine” in a collection
of prescription drug information. The left column contains
the co-occurring terms, the middle column the document
titles, and the right column the principal terms in the
selected document.

The application shown in Figure 3 is a web page that is
generated using JavaServer pages on the web server. This has
the advantage of not being affected by firewalls and requiring
limited resources on the client system.

This output page is created from a second JSP that contains the
three Select lists shown. However, the rightmost list is not filled
with specific data in advance. Instead, the data for filling it are
stored in a JavaScript array of arrays of terms, one for each
document. When you click on any document, the array of terms
for that document is loaded into the list using a JavaScript
function.

You can then view any document you select by clicking on a
“Show Document” button under the document listbox. However,
rather than just showing the document itself, the server bean
takes the top 10 terms found in the document and converts them
into hyperlinks which allow you to perform additional queries
using them. It also puts these top terms in a summary list at the
top of the document. This is similar to the Active Markup we
described previously [8], and is illustrated in Figure 4. These
term highlightings are constructed dynamically in Java within
the server-side bean, and thus are suited for a changing
environment, where the updated documents can be fetched from
the server. This differs from our origina Active Markup

procedure in that no Java classes are invoked on the client: al of
the computation is carried out on the server and returned in
HTML.

™ headechs raspanse © dose of study tragimant © raceptor subihpe © recurmant
headacha T addbonal treatmant T artenal Dlaod T boevalebility of sumatnptan
 cormed spithelium ©aTact of sumealriplan © amicacy of SUFEmplan suttinge tebkis
|

CLIMICAL PHARMACOLOGY
Mechanism of Action

Sumatnptan is an aganist far a vascular S-Hydroyinptamina, reoeptor subyes [probeby
a mamear of the §-HT, 1, famniby) haang orby o weal affiniy for 5-HT, , 5-HTg,, and BHT;
recepbors end nosignificant aMinity (a5 messurad using standard radiokgand bindng
assaysl of phamacakgcal activity at &-HTy, &HT5 ar 5-HT, moaptar subibmes o ot
alphay-, alphag-, or bataacrenargic, dapaming | dapamine,, muscannic, ar
DErECAazapine receRtos

The weatalar 5-HT, recepiar sulybye el Suneiipesn eciveias S present on cranal
Araras in bioth deg and primabe, on e human basilar artery, and inhe vasoulars of
hurnen dora matar and mediaies veso consticion. THS Sctionin AUmans comakams with
e rabf af migraine heedache. In eddbian ¥ Causing ¥agoco ietriclion, ssperimental data
fror enimal shadies ywahoe hat sumatriplan elso acthates 5-HT4 recaptors an peripharnal
tamminals of the rigaming nerva innervating cranial blood vessels. Such an achian may
cantrbuba to tha antimigrainous affect of sumatriptan in humans

Figure4 — The document display for Sumatriptan
Succinate with salient terms summarized at the top
and highlighted throughout.

You can then click on any highlighted term or on any of the
radio buttons at the top of the document and see a display of dll
the salient terms in that document in a list box. You can select
any term and ask to see other documents containing that term.
Here the server-side bean simply makes a database query against
the TermDocs database table to retrieve this information. In
addition, as shown in Figure 5, you can form a simple boolean
query to find documents containing any combination of terms as
well.

[|chistar taadache -
numbar of ateks e .
b kal -Padi el Informadi on -
| | D pamiral ared Efhirgl Extradied -Falend Informa
D zomin Mesy bl - atien] inlamadion
| Lo earian -Fatient nfarmatian
Wajoprolol Tarmie -Fatient infarrmation

{|aympbam of migrang
I ¥ our Madicne
M 2d-hpur penod
Hachusl migrsres
flaciusl migrsre sttack

||high chakesieml Iiitopioled Succinale Patien! information
(|MOTE far irgeclion { Harethindrares and Ethingl Estrsdial <P shen) Infor
{=tore &t bempe by sy = & Hnrgastimaie and Eitingl Extradiol -Patent nlim
S : == l{Morgastrel are Ething | Estradiol -Fatient Infoimat
famn =] ﬂ NSumetnpian Sycrinals -Ptien] nfmoion =
o = =i

Saarch W

Figure5-The major termsin the original document
are shown on the left, and the documents containing
the selected term are shown on theright.

4. DISPLAYING RELATIONS

You can use the Context Thesaurus table to provide a definitive
entry to terms that are actualy in the collection. This is
particularly useful if you want to investigate the space of lexical
relations. Once you select a term from the Context Thesaurus
table, you can query the database of related terms for all those

related to the selected term. We can represent how terms are
related using a Java tree list as shown in Figure 6.

=succinate tablet

Bl 4 succinate tablet =
=4 sumatriptan
Lo postmarketing experience
coronary artery disease
highest no-effect dose
number of attacks
succinate tahlet
coranary atery vasaspasm
maximurm single recammended human oral dose
cad
period of arganogenesis
aral treatment
pregnant rat
a-HT
cardiovascular evaluation e

.

sessssnsenese

Show relations | Plot |

Figure6— A Java Treelist of relations between terms

The term relations are kept in the Relations table we described
above. Since the left and right term relations are not duplicated
as right and left terms, two queries are needed. The results are
then combined and reduced in a hash table. The relations are
returned as an array of Java objects which are instances of a
class we cal Relns. This class provides accessor functions for
obtaining the term names, strength and relation name, and is just
a special case of the Relations object we used earlier, but with
public getter and setter methods for each internal parameter. The
SOAP (Simple Object Access Protocol) seridizer and
deserializer then use Java introspection and these methods to
construct the XML data stream and reconstruct the object at the
other end of the wire [9].

In our earlier papers[2, 6], we returned these objects using Java
Remote Method Invocation (RMI). However, Java RMI had not
been widely accepted and may not be compatible with all
browsers and with firewalls. Consequently, we redesigned this
system using a SOAP web service that transmits these same
Relns objects as a stream of XML data. These data are then
reassembled as Relns objects using the SOAP deserializer
classes within the Java applet.

This SOAP system provides a powerful way of exchanging
fairly complex Java objects across disparate clients and
networks, using HTTP or other well-accepted protocols.

An outline of the Java applet and the Relns object is shown in
Figure7.

+Relns
+netDeleted

+petDirsction Mediator
+patleft v ek o

+pathl

e-g:TIH'uagrl:T +HHelSoap
cpataight | eretmer +actionPerformed
+isMamed Hril
+aetDelated +=etTrae +Hun
+aelDiraction +HalueChanged
+ezatlaft
+aathlarme
+eatRight
+sal\i=ighl

+Madiator .4
~ +getRelations |y
+zalacilina

Figure7 — A simplified UML diagram of the Relns
object and the RelSoap Java applet.

We can then generate a plot of these relations using the
incremental graphical layout algorithms developed by
Tunkelang [6]. We show such a plot in Figure 8. Note that our
system represents both named and unnamed relations between
terms.

Figure 8 —A graphical plot of therelations between termsin
a collection, allowing term browsing.

This display is aclient-side Java applet that looks at each object
and asks whether the relation is named or unnamed. If unnamed,
it displays the strength of the relation. If named, it displays the
name of the relation. We further represent named relations as
directional using an arrowhead, and unnamed relations as bi-
directional, by using no arrowhead. Double clicking on any
frontier term causes a query back to the server to ask if that
object has further relations. If it does they are returned in an
array of Relns objects as before. Otherwise a zero-length array is
returned. In either case, the display changes the color of the box
containing that term, indicating thet it has now been expanded.
The graphical layout is recomputed each time to minimize
overlap between the terms.

From the representation in Figure 8, it is possible to browse
through the Relations collection and discover term relations that

reved information contained in disparate documents very
efficiently. It isthen also possible to select terms to either add to
queries or to view a list of documents containing those terms or
that relation, since all of that information is stored in the
database. It is aso possible to view the documents containing
that term as we showed in Figure 5.

5. CONCLUSION

We have used the Textract text-mining engine, along with a
database, a web server and SOAP-based web servicesto allow a
user to navigate through the documents, terms and relations in a
collection. This approach allows a user to discover a significant
amount of information regarding that collection without ever

having to formulate a sophisticated query.

6. REFERENCES

[1] Cooper, J. W. and Byrd, R J, “Lexica Navigation: Visually
Prompted Query Refinement,” ACM Digital Libraries
Conference, Philadelphia, 1997.

[2] Cooper, James W. and Byrd, Roy J., OBIWAN —*“A Visual
Interface for Prompted Query Refinement,” Proceedings of
HICSS-31, Kona, Hawaii, 1998.

[3] Ravin, Y. and Wacholder, N. 1996, “Extracting Names from
Natural-Language Text,” IBM Research Report 20338.

[4] Justeson, J. S. and S. Katz "Technical terminology: some
linguistic properties and an algorithm for identification in text.”
Natural Language Engineering, 1, 9-27, 1995.

[5] Byrd, RJ. and Ravin, Y. ldentifying and Extracting
Relations in Text. Proceeedings of NLDB 99, Klagenfurt,
Austria.

[6] Tunkelang, D. D., Byrd, R. J., and Cooper, J. W., “Lexical
Navigation: Using Incremental Graph Drawing for Query
Refinement,” Graph Drawing 97.

[7] Xu, Jnxi and Croft, W. Bruce. “Query Expansion Using
Loca and Global Document Analysis,” Proceedings of the 19"
Annual ACM-SGIR Conference, 1996, pp. 4-11

[8] Neff, May S. and Cooper, James W. Document
Summarization for Active Markup, in Proceedings of the 32™
Hawaii International Conference on System Sciences, Wailea,
HI, 1999.

[9] Cooper, James W. “Soaping Your Windows,” JavaPro,
May, 2001.

